Übungsblatt Nr.3

Aufgabe 1: Axiomatik X0

Sei Ω eine nicht-leere Menge, und seien $A, B, C \subseteq \Omega$ drei Ereignisse, Kreuzen Sie die Ihrer Meinung nach zutreffenden Antworten an:

Der Mengentheoretische Ausdruck für...

- a) "keines der Ereignisse tritt sein" lautet :

 - b. $[x] \overline{A} \cap \overline{B} \cap \overline{C}$
 - c. $[] \overline{A} \cup \overline{B} \cup \overline{C}$
 - d. [] "weiß nicht"
- b) "höchstens zwei Ereignisse treten ein":
 - a. $[A \cup B \cup C]$
 - b. [x] $\overline{A \cap B \cap C}$

 - d. [] "weiß nicht"
- c) "genau zwei Ereignisse treten ein":

 - a. [x] $(A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap C)$ b. [] $(A \cup B \cup \overline{C}) \cap (A \cup \overline{B} \cup C) \cap (\overline{A} \cup B \cup C)$
 - c. [] $\overline{A \cap B \cap C}$
 - d. [] "weiß nicht"

Lösung:

Zu (a): Der Ausdruck dafür, dass alle Ereignisse Stattfinden lauten $(A \cup B \cup C)$, dies ist das Einzige Ereignis, welches NICHT eintreten darf, somit ergibt sich für (a):

 $\overline{(A \cup B \cup C)} \rightarrow deMorgan \rightarrow \overline{(A \cap B \cap C)}$. Nach deMorgan gilt auch für (a).a und (a).b weiter: $(\overline{A \cap B \cap C}) \Leftrightarrow (\overline{A} \cup \overline{B} \cup \overline{C})$ (in Worten: Nicht A oder Nicht B oder Nicht C).

- Zu (b): Die Gegenwahrscheinlichkeit, dafür das höchstens 2 Ereignisse eintreten, wäre die, dass alle drei Ereignisse eintreten. $(A \cap B \cap C)$. Daraus ergibt sich die Lösung (b).b: $(A \cap B \cap C)$
- Zu (c): Es gibt genau drei mögliche Kombinationen, dass genau 2 Ereignisse eintreten. (In Worten: A und B und nicht C, oder A und nicht B und C, oder nicht A und B und C). In der Mengenleere kann man dies ausdrücken durch:

$$(A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap C)$$

Aufgabe 2: Axiome

Es sei $\Omega \neq 0$. Zeigen Sie: Ein Mengensystem $\Theta \subset P(\Omega)$ ist genau dann eine Algebra, wenn gilt:

(A"1)
$$\Omega \in \Theta$$

(A"2) $A, B \in \Theta \Rightarrow B - A \in \Theta$
(A"3) $A, B \in \Theta \Rightarrow A \cap B \in \Theta$

Lösung:

Definition: Ein Mengensystem $\Theta \subset P(\Omega)$ heißt Algebra in Ω , wenn gilt:

(A1)
$$\Omega \in \Theta$$

(A2)
$$A \in \Theta \Rightarrow \overline{A} \in \Theta$$

(A3)
$$A, B \in \Theta \Rightarrow A \cup B \in \Theta$$

Zu Zeigen:
$$(A"1)$$
 bis $(A"3) \Rightarrow (A1)$ bis $(A3)$
 $(A"1)$ bis $(A"3) \Leftarrow (A1)$ bis $(A3)$
,, \Rightarrow "
 $(A"1) \Leftrightarrow (A1)$
 $(A"2): A, B \in \Theta \rightarrow A, \Omega \in \Theta \Rightarrow \Omega - A\Theta \Rightarrow \overline{A} \in \Theta \Rightarrow (A2)$
 $(A"3): A, B \in \Theta \rightarrow \overline{A}, \overline{B} \in \Theta \Rightarrow \overline{A} \cap \overline{B} \in \Theta \rightarrow \overline{A} \cap \overline{B} \in \Theta \Rightarrow A \cup B \in \Theta \Rightarrow (A3)$
,, \Leftarrow "
 $(A1) \Leftrightarrow (A1)$
 $(A3): A, B \in \Theta \rightarrow \overline{A}, \overline{B} \in \Theta \Rightarrow \overline{A} \cup \overline{B} \in \Theta \rightarrow \overline{A} \cup \overline{B} \in \Theta \Rightarrow A \cap B \in \Theta \Rightarrow (A"3)$
 $(A2): A \in \Theta \land B \in \Theta \rightarrow A, \overline{B} \in \Theta \rightarrow A \cap \overline{B} \in \Theta \Rightarrow A - B \in \Theta \Rightarrow (A"2)$

Aufgabe 3: Ereignisse

Es sei P ein Wahrscheinlichkeitsmaß auf einer σ -Algebra Θ in einer Menge $\Omega \neq 0$. Zeigen Sie, dass für beliebige $A,B \in \Theta$ gilt:

a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

b)
$$P(A\Delta B) = P(A) + P(B) - 2P(A \cap B)$$

c)
$$A \subset B \Rightarrow P(A\Delta B) = P(B - A)$$

Lösung:

a)
$$P(A \cup B) \Leftrightarrow P((A - (A \cap B)) \cup (B - (A \cap B)) \cup (A \cap B))$$

 $\Leftrightarrow P(A - (A \cap B)) + P(B - (A \cap B)) + P(A \cap B) \Leftrightarrow P(A) - P(A \cap B) + P(B) - P(A \cap B) + P(A \cap B)$
 $\Leftrightarrow P(A) + P(B) - 2P(A \cap B) + P(A \cap B) \Leftrightarrow P(A) + P(B) - P(A \cap B)$

b)
$$P(A \triangle B) \Leftrightarrow P((A - (A \cap B)) \cup (B - (A \cap B))) \Leftrightarrow P(A - (A \cap B)) + P(B - (A \cap B))$$

 $\Leftrightarrow P(A) - P(A \cap B) + P(B) - (A \cap B) \Leftrightarrow P(A) + P(B) - 2P(A \cap B)$

c)
$$P(A \triangle B) \Leftrightarrow P(A - (A \cap B)) + P(B - (A \cap B)) \to A \subset B \to P(A \cap B) = P(A)$$

 $\Rightarrow P(A - (A \cap B)) + P(B - (A \cap B)) \Leftrightarrow P(A - A) + P(B - A) \Leftrightarrow P(\emptyset) + P(B - A)$

Aufgabe 4: Mengenlimites

a) Es sei (A_n) , $n \in IN$, eine unendliche Folge von Ereignissen aus einer σ – Algebra Θ in einer Menge $\Omega \neq 0$. Man betrachte die Ereignisse

$$A_* \coloneqq \mathop{\cup}_{n=1}^{\infty} \mathop{\cap}_{m \geq n} A_m, A^* \coloneqq \mathop{\cap}_{n=1}^{\infty} \mathop{\cup}_{m \geq n} A_m$$

Und zeige $A_* \subset A^*$

b) Unter der Annahme, dass für eine gedachte unendliche Serie von Würfen mit einem idealen Würfel A_n das Ereignis "im i-ten Wurf fällt eine Sechs" bezeichnet, interpretiere man A_* und A^* .

Aufgabe 5: Nachweis Algebren

Untersuchen Sie, ob die folgende Mengensysteme Θ Algebren bzw. σ – Algebren in $\Omega = [0, \infty)$ sind.

- a) $\Theta = \{A \subset \Omega : \text{eine der Mengen } A, \overline{A} \text{ enthält keine Primzahl } \}$
- b) $\Theta = \{A \subset \Omega : \text{eine der Mengen } A, \overline{A} \text{ ist endlich } \}$

(Die leere Menge ist endlich!)