11. Musterlösung zu Mathematik für Informatiker II, SS 2004

MARTIN LOTZ & MICHAEL NÜSKEN

Aufgabe 11.1 (Folgen).

(10 Punkte)

Wir betrachten Folgen.

$$\circ \ a = \left(\frac{n}{n+1}\right)_{n \in \mathbb{N}}.$$

$$\circ \ c = \left(\frac{n}{n^2+3}\right)_{n \in \mathbb{N}}.$$

$$\circ \ b = \left(\frac{n}{\log_2 n}\right)_{n \in \mathbb{N}_{\geq 2}}.$$

$$\circ \ d = \left(\frac{\sin(n)}{n}\right)_{n \in \mathbb{N}_{\geq 1}}.$$

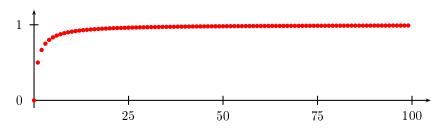
Mit MAPLE lässt sich durch das Kommando

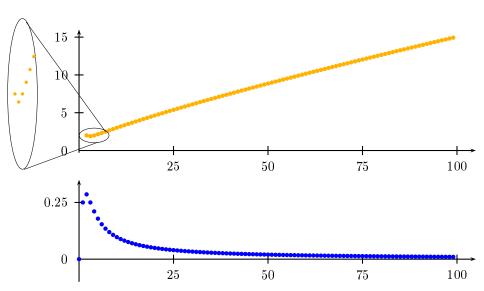
plots[pointplot](
$$\{ seq([n,1/(n+1)],n=0..99) \}$$
);

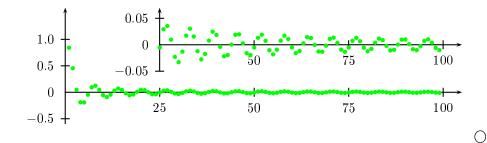
ein Bild der ersten hundert Werte der Folge $(\frac{1}{n+1})_{n\in\mathbb{N}}$ erzeugen.

(i) Erstelle für jede der obigen Folgen ein solches Bild.

Lösung. Die folgenden Bilder geben der Reihe nach die Folgen a bis d wieder.







(ii) Entscheide für jede der obigen Folgen, ob sie monoton ist.

Lösung. Die Folge a ist monoton steigend, alle anderen sind nicht monoton. Die Folge b ist *nicht* monoton steigend, wird aber schließlich monoton steigend in dem Sinne, dass die Werte b_n für $n \geq 3$ steigen. Das gleiche gilt für die Folge c, hier werden die Werte c_n für $n \geq 2$ immer kleiner, sodass die Folge schließlich monoton fällt.

Wir wollen diese Feststellungen nun auch begründen. Für die Folge a gilt (für $n \ge 1$) $a_n/a_{n-1} = n^2/(n^2-1) > 1$, woraus $a_n > a_{n-1}$ folgt.

Für die Folge b betrachten wir den Quotienten b_{n+1}/b_n . Für diesen gilt:

$$\frac{b_{n+1}}{b_n} = \frac{n+1}{n} \frac{\log_2 n}{\log_2 (n+1)} = \frac{\log_2 n^{n+1}}{\log_2 (n+1)^n}.$$

Das ist (weil $x < y \iff 2^x < 2^y$) genau dann größer als Eins, wenn $(n + 1)^n > n^{n+1}$ gilt. Das heißt, wir wollen zeigen, dass

$$\frac{(n+1)^n}{n^{n+1}} = \frac{1}{n} \left(1 + \frac{1}{n} \right)^n < 1$$

oder $\left(1+\frac{1}{n}\right)^n < n$ gilt. Für $n \geq 3$ folgt das aus *Aufgabe 11.5(iii*). Für die ersten zwei Werte der Folge haben wir $b_2=2$ und $b_3=\frac{3}{\log_2 3}\approx 1.9$, woraus sichtbar wird, dass die Folge nicht monoton ist.

Im Fall c gehen wir wie bei a vor, nur dass hier die Rechnung etwas aufwendiger ist:

$$\frac{c_n}{c_{n-1}} = \frac{n}{n^2 + 3} \frac{(n-1)^2 + 3}{n-1} = \frac{n^3 - 2n^2 + n + 3}{n^3 - n^2 + 3n - 3} = 1 - \frac{n^2 + 2n - 6}{n^3 - n^2 + 3n - 3}.$$

Der Nenner im letzten Bruch ist für $n \ge 2$ immer positiv, der Zähler $n^2 + 2n - 6$ ist für ganze Zahlen $n \ge 3$ positiv. Es folgt, dass das Verhältnis c_n/c_{n-1} für $n \ge 3$ kleiner als Eins ist, also $c_n < c_{n-1}$.

Dass die Folge d nicht monoton ist, sieht man sofort durch ausrechnen der ersten sechs Werte:

$$d_1 = .841471 \quad d_2 = .454649 \quad d_3 = .047040$$

$$d_4 = -.189201 \quad d_5 = -.191785 \quad d_6 = -.046569$$

Im Gegensatz zu b und c wird diese Folge aber auch nicht schließlich monoton: Zu jedem N lässt sich ein n>N finden so, dass d_n sowohl größere wie auch kleinere Nachfolger besitzt.

(iii) Entscheide für jede der obigen Folgen, ob sie nach oben beschränkt ist. Gib gegebenenfalls eine obere Schranke an.

Lösung. Die Folge a ist durch 1 nach oben beschränkt, da wegen n < n+1 immer $\frac{n}{n+1} < 1$ gilt.

Die Folge b ist nach oben unbeschränkt. Das heißt in Formeln: $\forall C \in \mathbb{R} \colon \exists n \in \mathbb{N} \colon b_n > C$. Sei also C eine beliebige reelle Zahl, ohne Beschränkung der Allgemeinheit dürfen wir C > 3 und $C \in \mathbb{N}$ annehmen. Nun setze $n = 2^C$. Dann ist $b_n = \frac{2^C}{C} > C$ (wegen $2^C > C^2$ für C > 3, das lässt sich durch Induktion leicht beweisen) und somit wurde gezeigt, dass die Folge schließlich jede Zahl C übersteigt.

Die Folge c hat an der Stelle n=2 ein Maximum: der Wert ist $c_2=\frac{2}{7}$. Davor ist nämlich $c_1=\frac{1}{4}$, und danach ist die Folge, wie wir festgestellt haben, monoton fallend. Also ist c durch $\frac{2}{7}$ nach oben beschränkt.

Die Folge d ist beschränkt, da die Sinusfunktion beschränkt ist. Eine obere Schranke ist die Eins.

(iv) Bestimme für jede der obigen Folgen Infimum und Supremum.

Lösung. Die Folge a hat die Null als Minimum und Supremum ist die Eins, wie aus der Umformung

$$\frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1}$$

sofort sichtbar wird.

Die Folge b ist nach oben unbeschränkt, besitzt aber ein Minimum, nämlich die $\frac{3}{\log_2 3} \approx 1.9$.

Die Folge c besitzt das Maximum $c_2=\frac{2}{7}$. Als Infimum hat die Folge die 0, da die Folgenglieder sich der 0 beliebig nähern. Dies lässt sich ganz einfach begründen:

$$\frac{n}{n^2+3} < \frac{n}{n^2} = \frac{1}{n}.$$

Die Folge d besitzt Maximum und Minimum, nämlich $d_1=\sin 1\approx .841471$ und $d_5=\frac{\sin 5}{5}\approx -.191785$. Alle anderen Werte sind vom Betrage her kleiner als $\frac{1}{6}<0.17$.

Aufgabe 11.2 (Konvergenz).

(4 Punkte)

Die unten angegebenen Folgen $(a_n)_{n\in\mathbb{N}}$ sind Nullfolgen. Bestimme zu $\varepsilon=0.001$ jeweils ein N so, dass $|a_n|<\varepsilon$ für alle $n\geq N$ gilt.

(i) $a_n = \frac{n}{2^n}$.

Lösung. Die Zahl N=14 ist die kleinste Zahl, sodass $|a_n|<\varepsilon$ für $n\geq N$ gilt.

(ii) $a_n = \frac{1}{\log_2(n+2)}$.

Lösung. Für $N=2^{1000}-1$ gilt gerade noch $a_{N-1}=\varepsilon$. Da a_n streng monoton fallend ist, gilt $0< a_n<\varepsilon$ für $n\geq N$. Dieses N ist in Dezimaldarstellung eine 301-stellige Zahl!

(iii) $a_n = \frac{n}{n^2 + 3}$.

Lösung. Die Zahl N=1000 ist die kleinste Zahl, sodass $|a_n|<\varepsilon$ für $n\geq N$ gilt. $(a_{N-1}=\frac{999}{999^2+3}\approx 0.001000997\ldots$, also $a_n>\varepsilon$ und für $n\geq N$ gilt $0< a_n<\frac{1}{n}<\varepsilon$.)

(iv) $a_0 = 1$ und $a_n = \frac{\cos(\frac{\pi}{2}n)}{n}$ für n > 0.

Lösung. Da der Cosinus durch 1 beschränkt ist, ist man auf der sicheren Seite, wenn N=1000 oder größer gewählt wird. Wir haben nämlich $\cos(\frac{\pi}{2}1000)=0$, und für n>1000 ist der Quotient $\cos(\frac{\pi}{2}n)/n$ definitiv kleiner als 1/1000=0.001.

Aufgabe 11.3 (Reihen).

(4 Punkte)

Untersuche die folgenden Reihen auf Konvergenz oder Divergenz.

(i) $\sum_{\nu=1}^{\infty} \frac{\nu!}{\nu^{\nu}},$

Lösung. Wir bemerken, dass die Hälfte der Faktoren im Zähler des Bruches $\frac{\nu!}{\nu^{\nu}}$ höchstens $\frac{1}{2}\nu$ ist:

$$\frac{\nu!}{\nu^{\nu}} \le \left(\frac{1}{2}\right)^{\lfloor \nu/2 \rfloor}.$$

Weil alle Summanden positiv sind, ist die konvergente geometrische Reihe $\sum_{\nu=1}^{\infty} \left(\frac{1}{2}\right)^{\nu/2-1}$ (mit dem Wert $\frac{2}{1-\frac{1}{\sqrt{2}}}=4+2\sqrt{2}$) eine Majorante und damit konvergiert die gegebene Reihe.

(ii) $\sum_{j=0}^{\infty} \frac{j^4}{3^j},$

Lösung. Diese Reihe konvergiert. Wir wollen dies mit dem Quotientenkriterium nachweisen. Dazu reicht es zu prüfen, dass der Quotient

$$\frac{(j+1)^4}{3^{j+1}} \left(\frac{j^4}{3^j}\right)^{-1} = \frac{(j+1)^4}{3j^4}$$

für genügend große j kleiner als eine Zahl θ ist mit $\theta < 1$. Wenn wir ganz großzügig $1 \le j/10$ abschätzen (was ja schon ab j=10 stimmt), so ist der Quotient höchstens gleich $\frac{(11/10)^4}{3} = \frac{14\ 641}{30\ 000} < \frac{1}{2} =: \theta$. Damit konvergiert die Reihe.

(iii) $\sum_{c=0}^{\infty} \frac{c+4}{c^2-3c+1}$,

Lösung. Diese Reihe divergiert. Wir benutzen das Majorantenkriterium "rückwärs", um das zu zeigen. Die angegebene Reihe majorisiert nämlich die harmonische Reihe:

$$\frac{1}{c} < \frac{c+4}{c^2 - 3c + 1}.$$

Würde sie selbst konvergieren, so müßte auch die harmonische Reihe $\sum_{c=1}^{\infty} \frac{1}{c}$ konvergieren. Das ist aber nicht der Fall. Also kann die angegebene Reihe nur divergieren.

(iv)
$$\sum_{k=1}^{\infty} \frac{(k+1)^{k-1}}{(-k)^k}$$
.

Lösung. Diese Reihe konvergiert. Um das zu sehen, benutzen wir das Leibnizkriterium. Ersteinmal formen wir um:

$$\frac{(k+1)^{k-1}}{(-k)^k} = (-1)^k \underbrace{\frac{1}{k} \left(1 + \frac{1}{k}\right)^{k-1}}_{=:d_k}.$$

Wie beim Leibnizkriterium gefordert, wechselt das Vorzeichen von Summand zu Summand. Wir müssen also noch prüfen, dass die Beträge d_k eine monotone Nullfolge bilden. *Nullfolge* ist klar, sobald wir festgestellt haben, dass $\left(1+\frac{1}{k}\right)^{k-1}$ immer kleiner als 3 ist und das steht in *Aufgabe 11.5. Für die *Monotonie* betrachten wir

$$\frac{d_{k+1}}{d_k} = \left(1 - \frac{1}{(k+1)^2}\right)^k.$$

Das ist offensichtlich kleiner als Eins und damit ist d_k (sogar streng) monoton fallend. Also konvergiert die Reihe.

Aufgabe 11.4 (Kettenbruch).

(6 Punkte)

Betrachte den folgenden Kettenbruch:

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}$$

Darunter versteht man die durch $x_0:=1$ und $x_{n+1}:=1+\frac{1}{x_n}$ definierte Folge. Zeige: Mit dem goldenen Schnitt $\varphi=\frac{1}{2}(1+\sqrt{5})$ gilt

$$|x_n - \varphi| \le \frac{1}{\varphi^{n+1}}$$
 und $x_n \to \varphi$.

Lösung. Wir bemerken vorab, dass alle Folgenglieder x_n mindestens gleich 1 sind. Für n=0 ist das klar, und für n>0 ergibt sich das induktiv aus $x_n=1+\frac{1}{x_{n-1}}\geq 1+0=1$, weil x_{n-1} ja nach Induktionsvoraussetzung insbesondere positiv ist.

Der Beweis der Ungleichung geschieht durch Induktion, der Fall n=0 ist einfach. Nimm also (induktiv) an, n sei größer als Null und die Aussage gelte für n-1. Wir beobachten zuerst, dass $\varphi=1+\frac{1}{\varphi}$ gilt (vergleiche dazu ??). Daraus ergibt sich

$$|x_n - \varphi| = \left| 1 + \frac{1}{x_{n-1}} - 1 - \frac{1}{\varphi} \right| = \left| \frac{1}{x_{n-1}} - \frac{1}{\varphi} \right|.$$

Indem wir $x_{n-1} \geq 1$ und die Induktionsannahme benutzen, erreichen wir

$$\left| \frac{1}{x_{n-1}} - \frac{1}{\varphi} \right| = \left| \frac{\varphi - x_{n-1}}{x_{n-1}\varphi} \right| < \frac{1}{\varphi^{n+1}},$$

was zu zeigen war.

Die Konvergenz ergibt sich nun aus der Tatsache, dass wegen $\varphi>1$ die Folge $1/\varphi^{n+1}$ für $n\to\infty$ gegen Null konvergiert.

*Aufgabe 11.5 (Eine besondere Folge).

(0+12 Punkte)

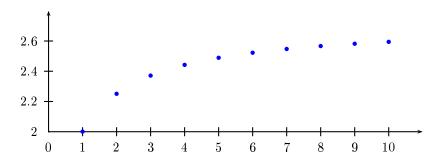
 \bigcirc

Wir wollen die Folge $(a_n)_{n\in\mathbb{N}_{>0}}$ untersuchen mit

$$a_n = \left(1 + \frac{1}{n}\right)^n.$$

(i*) Stelle die ersten 10 Folgenglieder graphisch dar (z.B. mit MAPLE, wie in Aufgabe 11.1.)

Lösung. Wenn wir die y-Achse bei 2 beginnen lassen, sieht die Graphik wie folgt aus.



Die zugehörige Wertetabelle ist diese:

Nach den ersten großen Schritten wächst die Folge scheinbar nur noch langsam.

(ii*) Zeige, dass für alle natürlichen Zahl n>0 und $k\geq 0$ die Ungleichung $\binom{n}{k}\frac{1}{n^k}\leq \frac{1}{k!}$ gilt.

Lösung. Wir haben

$$\binom{n}{k} = \frac{n^{\underline{k}}}{k!} < \frac{n^k}{k!},$$

woraus die Behauptung folgt.

(iii*) Zeige, dass die Ungleichungen

$$1 \le a_n \le \sum_{0 \le k \le n} \frac{1}{k!} < 3$$

gelten.

Lösung. Für die zweite Ungleichung benutzen wir den binomischen Satz in Kombination mit (ii*):

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} < \sum_{k=0}^n \frac{1}{k!}.$$

Für die letzte Ungleichung benutzen wir, dass für $k \geq 2$ gilt: $1/k! \leq 1/2^{k-1}$. Dann haben wir

$$\sum_{k=0}^{n} \frac{1}{k!} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \le 2 + \sum_{k=2}^{n} \frac{1}{2^{k-1}}$$

$$= 2 + \sum_{k=1}^{n-1} \frac{1}{2^k} = 2 + 1 - \frac{1}{2^n} = 3 - \frac{1}{2^n} < 3.$$

(iv*) Beweise die Bernoullische Ungleichung: Für $x \ge -1$ und $n \ge 1$ gilt

$$(1+x)^n \ge (1+nx).$$

Wann gilt Gleichheit?

Lösung. Wir machen Induktion. Für n=1 gilt die Aussage, nimm also an sie gelte für n-1. Dann haben wir

$$(1+x)^n = (1+x)(1+x)^{n-1} \ge (1+x)(1+(n-1)x)$$

= 1+nx+(n-1)x² > 1+nx.

Beachte, dass wir hier von $(1+x) \ge 0$ entscheidend gebrauch gemacht haben!

(v*) Die Folge (a_n) ist monoton wachsend ...

Lösung. Diese Lösung kommt ohne die Bernoullische Ungleichung aus. Wir haben eben schon verwendet, dass nach dem Binomischen Lehrsatz

$$a_n = \left(1 + \frac{1}{n}\right)^n = \sum_{0 \le k \le n} \binom{n}{k} \frac{1}{n^k}$$

gilt. Betrachten wir darin die Summanden, so stellen wir fest, dass sie mit wachsendem n auch wachsen. Es gilt für $1 \le n < m$ und $k \ne 0$:

$$\binom{n}{k} \frac{1}{n^k} < \binom{m}{k} \frac{1}{m^k}.$$

Dazu schreiben wir den Term wie folgt um:

$$\binom{n}{k} \frac{1}{n^k} = \frac{1}{k!} \prod_{0 \le j \le k} \left(1 - \frac{j}{n} \right).$$

Wegen n < m gilt nun aber $1 - \frac{j}{n} < 1 - \frac{j}{m}$, also folgt (*). Damit können wir nun aber a_n durch a_m abschätzen:

$$a_n = 1 + \sum_{1 \le k \le n} \binom{n}{k} \frac{1}{n^k}$$

$$< 1 + \sum_{1 \le k \le n} \binom{m}{k} \frac{1}{m^k} + \sum_{n+1 \le k \le m} \binom{m}{k} \frac{1}{m^k} = a_m.$$

Für m=n+1 gelesen erhalten wir, dass a (sogar streng) monoton steigend ist.

Lösung. Diese Lösung verwendet die Bernoullische Ungleichung. Wir schätzen den Quotienten $\frac{a_n}{a_{n-1}}$ ab:

$$\frac{a_n}{a_{n-1}} = \left(\frac{n+1}{n}\right)^n \left(\frac{n}{n-1}\right)^{-n+1}$$

$$= \frac{n+1}{n} \left(1 - \frac{1}{n^2}\right)^{n-1}$$

$$> \frac{n+1}{n} \left(1 - \frac{n-1}{n^2}\right) \quad \text{(vergleiche (iv*))}$$

$$= n^2 + \frac{1}{n} > 1.$$

Damit ist die Folge monoton wachsend.

(vi*) ...und konvergiert.

Lösung. Da sie monoton steigend und beschränkt, muss sie nach einem Satz aus der Vorlesung auch konvergieren.

 \bigcirc

 \bigcirc

(vii*) Für alle m < n gilt $a_n > \sum_{0 \le k \le m} \frac{1}{k!} \cdot \frac{n^{\underline{k}}}{n^k}$.

Lösung. Die Summe kann auch geschrieben werden als

$$\sum_{0 \le k \le m} \frac{1}{k!} \cdot \frac{n^k}{n^k} = \sum_{0 \le k \le m} \binom{n}{k} \cdot \frac{1}{n^k}$$
$$= a_n - \sum_{\substack{m+1 \le k \le n \\ k}} \binom{n}{k} \cdot \frac{1}{n^k}.$$

Daraus folgt die Behauptung.

(viii*) Es gilt $\lim_{n\to\infty} a_n \ge \sum_{0\le k\le m} \frac{1}{k!}$.

Lösung. Wir erinnern uns, dass aus $a_n>c$ mindestens $\lim_{n\to\infty}a_n\geq c$ folgt. Wie wir in (vii*) gesehen haben, gilt

$$a_n > \sum_{0 \le k \le m} \frac{1}{k!} \cdot \frac{n^k}{n^k} \ge \sum_{0 \le k \le m} \frac{1}{k!}$$

und damit gilt eine entsprechende Ungleichung auch im Grenzwert $n \to \infty$.

(ix*) Es gilt

$$\lim_{n \to \infty} a_n = \sum_{k \ge 0} \frac{1}{k!} =: \mathbf{e} \approx 2.718281828.$$

Lösung. Die Folge der $b_m = \sum_{0 \le k \le m} \frac{1}{k!}$ ist monoton steigend und nach (viii*) durch $\lim_{n \to \infty} a_n$ beschränkt, also konvergiert diese Folge. Damit folgt ersteinmal $\lim_{n \to \infty} a_n \ge \lim_{m \to \infty} b_m$. Nach (iii*) ist aber immer auch $a_n \le b_n$, also folgt $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$ und damit die behauptete Gleichheit.

(x*) Folgere $\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n = e^2$.

Lösung. Wir erinnern uns, dass $\lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$ gilt, falls beide gegebenen Folgen konvergieren. Das ist insbesondere richtig, wenn $a_n=b_n$ gilt. Also ist

$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n = \lim_{n \to \infty} \left(\left(1 + \frac{1}{n/2} \right)^{n/2} \right)^2$$

$$= \left(\lim_{n \to \infty} \left(1 + \frac{1}{n/2} \right)^{n/2} \right)^2 = \left(\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \right)^2 = e^2 . \bigcirc$$

Bemerkung: Es gilt allgemeiner $\lim_{n\to\infty} (1+\frac{x}{n})^n = \mathrm{e}^x = \sum_{k>0} \frac{x^k}{k!}$.