Übungen zur Vorlesung

Datenstrukturen und Algorithmen

SS 2004

Blatt 1

AUFGABE 1 (4 Punkte):

Wir betrachten die Sortieralgorithmen Insertion-Sort und Merge-Sort. Der Algorithmus Insertion-Sort benötige zur Sortierung von n Zahlen $8n^2$ Vergleiche, der Algorithmus Merge-Sort benötige zur Sortierung von n Zahlen $64n\log(n)$ Vergleiche. Weiter sei Computer A in der Lage pro Sekunde 10^9 Vergleiche durchzuführen, während Computer B pro Sekunde nur $5 \cdot 10^6$ Vergleiche durchführen kann. Wie lange braucht man mit Insertion-Sort auf Computer A bzw. mit Merge-Sort auf Computer B, um 10^7 Zahlen zu sortieren?

AUFGABE 2 (4 Punkte):

Was ist der kleinste Wert für n, so dass ein Algorithmus mit Laufzeit $100n^2$ schneller ist als ein Algorithmus, dessen Laufzeit 2^n beträgt?

AUFGABE 3 (4 Punkte):

Wir betrachten das Suchproblem:

Eingabe: Eine Folge von n Zahlen (a_1, \ldots, a_n) , die in einem Array A gespeichert ist, und eine weitere Zahl v.

Ausgabe: Ein Index i, so dass v=A[i] oder ein spezieller Wert Nill, falls v nicht in der Folge A auftaucht.

Schreiben Sie Pseudocode für die so genannte $lineare\ Suche$. Die lineare Suche durchläuft das Array einmal von links nach rechts, um die Zahl v im Array A zu lokalisieren.

AUFGABE 4 (8 Punkte):

Wir betrachten das Minimumsuchproblem:

Eingabe: Eine Folge von n Zahlen (a_1, \ldots, a_n) , die in einem Array A gespeichert ist.

Ausgabe: Ein Index i, so dass $A[i] \leq A[j]$ für alle j = 1, ..., n gilt.

- 1. Beschreiben Sie in Pseudocode einen Algorithmus für die Minimumsuche. (4 Punkte)
- 2. Formulieren Sie eine Schleifeninvariante für Ihren Algorithmus und zeigen Sie mit Hilfe dieser Invariante die Korrektheit Ihres Algorithmus. (4 Punkte)